
AFRL-IF-RS-TR-1999-257
Final Technical Report
January 2000

EMMA, AN EVOLUTION MEMORY
MANAGEMENT ASSISTANT

CoGen Tex, Inc.

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. D893

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

20000214 060
AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

jyjlC QUALITY DBfiPECTBD 1

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1999-257 has been reviewed and is approved for publication.

APPROVED: %Lff\A 0 /Uiorti
DEBORAH A. CERINO
Project Engineer

FOR THE DIRECTOR:

NORTHRUP FOWLER
Technical Advisor
Information Technology Division

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

EMMA, AN EVOLUTION MEMORY MANAGEMENT ASSISTANT

Daryl McCullough
Tanya Korelsky

Contractor: CoGen Tex, Inc.
Contract Number: F30602-96-C-0220
Effective Date of Contract: 27 June 1996
Contract Expiration Date: 30 November 1999
Program Code Number: 6E20
Short Title of Work: EMMA, An Evolution Memory Management

Assistant
Period of Work Covered: Jun 96 - Nov 99

Principal Investigator: Daryl McCullough
Phone: (607) 266-0363

AFRL Project Engineer: Deborah A. Cerino
Phone: (315)330-1445

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Deborah A. Cerino, AFRL/IFTD, 525 Brooks Road, Rome, NY.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank! 2. REPORT DATE

JANUARY 2000
3. REPORT TYPE AND DATES COVERED

FINAL Jun96-Nov99
4. TITLE AND SUBTITLE

EMMA, AN EVOLUTION MEMORY MANAGEMENT ASSISTANT

6. AUTHOR(S)

Daryl McCullough and Tanya Korelsky

5. FUNDING NUMBERS

C - F30602-96-C-0220
PE - 62301E, 63728F
PR- D893
TA- 01
WU-01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

CoGen Tex, Inc.
Village Green Suite 2
840 Hanshaw Road
Ithaca New York 14850-1589

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency Air Force Research Laboratory/IFTD
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 Rome New York 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1999-257

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Deborah Cerino/IFTD/ (315) 330-1445

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT {Maximum 200 words!

This report summarizes the research accomplished and the resulting software tool, Evolution Memory Management Assistant
(EMMA), which was developed during the contract period. The goal of EMMA is to manage information used in software
development throughout a system's life cycle. EMMA differs from current project management tools in that it manages not
only the system requirements that developers must satisfy, but also the context in which the developers develop the system.
This contextual information includes assumptions about the operating environment and user behavior, and it supports explicit
planning of software evolution. EMMA also relates system development tasks to technical issues to help ensure that all
members of the project are informed about the consequence of development decisions. EMMA keeps track of dependencies
among system components and also the reasons (rationale) for dependencies. Thus, EMMA is flexible in considering
contingencies and alternative approaches to building a system.

14. SUBJECT TERMS

Project Management, Requirements Management
15. NUMBER OF PAGES

64
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 238.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Table of Contents

INTRODUCTION 3

What is EMMA? 3

EMMA in Action 3

Initial Development 3
Maintenance 8

What Problems Does EMMA Address? 1°

How Does EMMA Represent Design Information? 1"

Features of EMMA * 1

Comparison of EMMA with Other Tools and Methodologies H
EMMA and Design-by-Contract U
EMMA and other information management tools 12

Conclusions and Recommendations for Future Work 17
Recommendations for Future Work 18

THE EMMA METAMODEL FOR SYSTEM EVOLUTION 20

Properties and Context 20

Goals and Solutions 22
Why Alternative Solutions? 23

Dependencies 23

Releases 24

Collaboration: Goal Owners and Contractors 25
Negotiation and Discussion among Collaborators 26

Consistency and Completeness 28
Consistency and Completeness Problems 28

BIBLIOGRAPHY 29

APPENDIX: EMMA PAGES AND COMMANDS 31

EMMA Title Page 31

Login Screen 31

Workspace Page 31
Creating a New Workspace 32
Operations on an Existing Workspace 32
Miscellaneous 33

Left Frame 33
Hide/Show Solutions 34
Lower Left 35

Right Frame 36

Tabs 37

Details Page 37
Alternatives/Subgoals Page 42
Properties Page 43
Context Page 49
Status Page 49

List of Figures

Figure 1: EMMA Solution Structure for "Status Reporter" 6
Figure 2: Completeness/Consistency Report for one property of Status Reporter 7
Figure 3: Release Report for "Status Viewer" 8
Figure 4: Analysis of Progress Reports 9

Introduction

What is EMMA?

EMMA is an innovative tool that lets developers collaboratively explore, select, and
document alternative solutions to the problem of evolving a complex system to meet
changing requirements.

In order to make well-informed decisions about the evolution of a system through its
sequence of releases, managers need access to information about interdependencies
among the requirements, constraints and for different parts of the system. EMMA
provides a web-based interface for recording, managing, and disseminating this
information.

EMMA in Action

In this section, we describe a scenario in which EMMA is used. To simplify things, we
describe the requirements negotiation process as taking place among a single group of
developers in the initial stages of a project.

Initial Development

Debbie has an idea for making a useful tool: a program that automatically
generates status reports from project management data. At this stage, it is just the
germ of an idea; Debbie doesn't know what the requirements ought to be, or what
resources will be needed to build it, or what sorts of report format should be used, or
what sort of data format the project data will be in. But, she knows enough to get
started in EMMA:

• She creates a new EMMA workspace for recording development
information about the system.

• She calls the top (and only) node "Status Reporter". The top node
of an EMMA workspace represents the entire system to be built,
while lower-level nodes represent components ofthat system.

• She makes herself the owner of this node. That means that she is
the only one allowed to modify the requirements for the system as
a whole.

On the properties page, she enters one item: "Automatically
generates progress reports from project management data". The
properties of the top node represent requirements of the system as
a whole.

Before Debbie can go any further with her idea, there are many questions that need to
be answered and issues to address:

1. What format will the reports be in?

2. What data format will the project data be in?

3. What technology will be used to generate the reports?

4. What platform will the report generator run on?

5. etc.

At this point, Debbie calls a brainstorming meeting of all her developers to discuss
the project.

Fred suggests that, rather than developing text generation technology from
scratch, they should use the Company X text generation framework. Debbie agrees,
but to be a little more general, she puts "text generation framework" into the context
of the top goal. The context represents assumptions as well as resources used in
building the system.

Ted proposes that a quick prototype could be implemented in WordBasic using
MailMerge (a simple programmable database that interoperates with MS Word) as a
stand-in for a project management database. The first prototype might just use fill-in-
the-blank templates to create the reports, rather than real text generation. Debbie
makes Ted a contractor for the top node. (The contractors for a node are those team
members that will work on implementing the system or component corresponding to
that node). Underneath the top node, Ted creates a solution called "Word-based
Solution". (A solution is a particular approach to building a system or system
component by dividing system requirements among lower level components. Each
solution will have several subgoals underneath representing these components.) On
the properties page, Ted adds new properties, "Word-compatible reports" and "Able
to incorporate free text in Word format". On the context page, Ted adds the resources
"MS Word", "WordBasic", and "MailMerge". Ted gives the solution the following
subgoals:

1. MailMerge database

2. Report templates

3. GUI Interface

4. WordBasic macros

Ted allocates the properties and context elements of his solution among these
subgoals. For each property, Ted creates links to those context elements on which the
property depends.

Ted suggests that, as soon as Company X comes out with a version of their text
generation framework that generates Web pages, they could make a version of
"Status Reporter" that is viewable over the World-Wide Web. Debbie adds Ted to the
list of contractors for the top node. Ted adds an alternative solution, called "Web-
based Solution". On the properties page, Ted adds several new properties: "Viewable
using standard web browsers", "Viewable across the WWW." On the context page,
Ted adds a new context element, "Framework for generating web pages" and adds
"JRun configurable Java web server". Ted creates the following subgoals for this
solution:

1. Project data interface.

2. Web server

3. Report viewer

4. Report generator

Ted then allocates the properties and context elements of her solution among these
subgoals. For each property, Ted creates links to those context elements on which the
property depends.At this point, the EMMA solution structure for "Status Reporter"
looks like Figure 1.

^ EMMA - Netscape

0e £<Ä üiew fio £omnuricatof Help

BEE

■jj. ^^

$•;*; Web-based Solution
j-@ Project Data Interface
j-© Web server
;■■■© Report viewer
L© Report generator

B- S Word-based Solution
!••■© MailMerge Database
[•■•© Report templates
!•■■© GUI Interface
*•■■© WordSasic macros

Hide Solutions • Workspaces
Releases • Undo • Redo • He

. A. <ä EMMA
Saving: on. Workspace: Persic« I of Status

Reporter.

| Status Reporter

Parent Solution , Active Solution

Details Alternatives Properties | Context Status

Name Status Reporter

Owner Debbie

Contractors • Greta
• Fred
• Ted

Type Application

Description Generates status reports from project data.

Parent Solution (none) —

Releases • 1.0

4 0

'RBhl [Document Done

Figure 1: EMMA Solution Structure for "Status Reporter''

Debbie adds a sequence of releases and tentatively assigns properties and context
elements to releases. The first release will have the properties "Generate status reports
from project data", "Word-compatible reports" and "Able to incorporate free text in
Word format". The second release will have the properties "Generate status reports
from project data", "Viewable using standard web browsers", and "Viewable across
the WWW." On the context page, Debbie assigns context elements to releases to
reflect when they will likely become available.

Debbie then checks the consistency of this release assignment. On the "properties'
page of EMMA, she clicks on the button labeled "Analyze". This produces a list of
top-level properties that have potential problem; in this case, there is only the
property "Viewable across the WWW". Debbie clicks on this name, producing the
summary shown in Figure 2.

i£r Netscape HEB

Property Viewable across the WWW

Property Viewable across the WWW is currently in the following releases:

Release 2.0

Release 3.0

Release 4.0

Dependency on Unavailable Item in Release 2.0

• Property Viewable across the WWW, which is in release 2.0, depends on
top-level context element JBun configurable Java web server. This context
element will not be available until release 3.0.

d
Figure 2: Completeness/Consistency Report for one property of Status Reporter

This report tells Debbie that she can't have the property "Viewable Across the
WWW" in Release 2, because it depends on JRun, which is not available until later.

To correct this problem, Debbie moves the property "Viewable Across the WWW" to
release 3.

Finally, Debbie generates a summary of the release plan. The results are shown
in Figure 3.

'- Release Report for Goal "Status Repoitet - Netscape

Release Report for Q| Status Reporter

Releases

1.0

2.0

3.0

New Objects in Release

(F> 'Word-compatible reports

(P) Able to incorporate free text in 'Word
format

(F) Generate status reports from project data

(G) Status Reporter

(St Web-based Solution (active)

(Gt Project Data Interface

(G) Report generator

(S) Word-based Solution

(G) MaflMerge Database

(G) Report templates

(O) GUI Interface

(G) WordBasic macros

(P) Viewable using standard web browsers

(P) Viewable across the WWW

(G) Web server

(G) Report viewer

(O JRun configurable Java web server

Figure 3: Release Report for "Status Viewer"

Objects Removed from Release

(S) Word-based Solution

Release Description

Zi

Maintenance
Later, development on status reporter has reached the maintenance phase. The Word
based prototype has been built, and feedback was gathered. The feedback was used to

come up with new requirements (entered as properties) for the commercial, Web-
based release:

• The first Web version of Status Reporter works off of ASCII data files
representing the project data. A planned later version will work off of
a database API instead.

• Besides status reports, which only describe the current state of the
project, Debbie wants to be able to also generate progress reports,
which compare the state of the project on two different months.

Debbie tentatively plans to implement progress reports in release 3.0, and to make
release 4.0 database compatible. She makes these release assignments in EMMA and
clicks on Analyze. The results are shown in figure 4. There is a problem in release 3.0
because progress reports depend on Project History, which is only available in the
database compatible version. For this reason, Debbie decides to postpone progress
reports until release 4.0 (or she could implement database compatibility earlier).

|^ Netscape HHD

Property Progress Reports
A

Property Progress Reports is currently in the following releases:

Release 3.0

Release 4.0

Dependency on Unavailable Item in Release 3.0

• Property Progress Reports, which is in release 3.0, depends on property
Project History Data of solution Database Compatible Interface. This
solution will not be available until release 4.0.

zl

Figure 4: Analysis of Progress Reports

What Problems Does EMMA Address?

EMMA provides a combination of features that is unique among tools to support
software engineering. EMMA provides a convenient structure that explicitly
records the following types of information.

1. The properties that a system (or component) must fulfill and the context
under which it is to be developed. This way of organizing system
requirements is critical for being able to plan for the evolution of a complex
system.

2. The planned sequence of releases of a system, and the information about what
system properties and context elements will be available in what releases.

3. The alternative solutions considered for each system component.

These features together provide information management to support the
development and evolution of a complex system. They allow for reasoning about
interdependencies of subsystems and about what each member of the
development team is expecting from the others. EMMA supports developers in
thinking in terms of system evolution rather than the separate activities of system
development and system maintenance. By explicitly representing alternatives and
future releases, developers have a convenient way to record their thoughts about
why they made the design decisions they made and what future circumstances
would cause them to revise those decisions.

How Does EMMA Represent Design Information?

10

Design evolution information in EMMA is organized around five interrelated
concepts:

• Functional requirements;

• Context: assumptions, resources and design constraints under
which those requirements are to be achieved;

• Development goals, which cluster related requirements and the
associated context information;

• Solutions, which are software engineering approaches to
meeting those goals;

• Evolutionary Change, which may alter requirements, context,
goals or solutions.

Features of EMMA

EMMA uses a Java/HTML-based hypertext interface, for easy deployment in any
environment that supports standard web browsers. It also uses CoGenTex's advanced
presentation generation technology to automatically generate various hypertext
reports and web pages. Information entered into EMMA can include links to external
documents, such as requirements or specifications created using other tools.

Comparison of EMMA with Other Tools and
Methodologies

EMMA and Design-by-Contract
EMMA's approach to system development by partitioning into components, each of
which must satisfy certain requirements, is similar to the idea of "Design by Contract"
[Meyers]. An EMMA solution structure can be thought of as a contract for building a
solution and also for future evolution ofthat solution. However, Design by Contract
as it is usually interpreted does not provide any mechanism for discussion and
negotiation about the nature of the contract; it is a purely top-down development. The
EMMA metamodel is unique in providing for exceptions, which allow for "contract
negotiation" in which bottom-up influences can affect the final design for a system.

Each goal in an EMMA solution structure represents functionality that the contractor
promises to provide (by building a solution). The context associated with a goal
represents commitments made by the goal owner (which can reflect functionality
provided by other contractors, or guarantees about the users or operating
environment). This view of system development is compatible with (but not limited
to) the concept of required and provided interfaces for components [Euclid, TRP,

11

CBSE]. The provided interface describes the external behavior the component must
satisfy, while the required interface describes the demands the component makes on
(or services required of) other components. The EMMA notion of exceptions is
broader than the usual notion of required interfaces, however. Exceptions allow a
component to make demands not only on other components, but also on users and on
the environment. Thus in an iterative development model, some of the high-level
goals for the system may ultimately reflect the needs of particular components. This
is important for system developers to know, since evolutionary changes may modify
or eliminate components and thus make some system requirements obsolete.

EMMA and other information management tools

The goal of EMMA is to manage information used in software development
throughout a system's life cycle. EMMA differs from other tools in several respects:
(1) EMMA manages not only the system requirements that developers must satisfy,
but also the context in which the developers develop the system. This contextual
information includes assumptions about the operating environment and user behavior
of the fielded system, and also assumptions about externally supplied products (tools,
infrastructure, etc.). (2) EMMA supports explicit planning of software evolution.
Following the release-based software development model, EMMA allows developers
to plan for several future versions of a system at once, so that the system can be built
not only to satisfy current requirements, but also to anticipate future requirements. (3)
EMMA supports communication among all the members of the development team,
including project managers, software designers and software developers. (4) EMMA
relates system development tasks to technical issues, to help make sure that all
members of the project are informed about the consequences of development
decisions.

EMMA has some similarities with three broad types of tools: (1) Project and process
management tools, (2) Requirements management tools, and (3) Configuration
management tools.

Project Management Tools

Like project management tools such as Microsoft Project, EMMA partitions work on
a project into a number of smaller parts, and allocate each part to one or more
members of the development team. Also like project management tools, EMMA
keeps track of the dependencies among parts of a large project. However, in project
management tools, the emphasis is on scheduling and resource allocation for tasks,
while in EMMA the emphasis is on assumptions and requirements for system
components. In project management tools, there is no convenient way to connect the
various tasks with system components, and there is no way to automatically

12

determine functional dependencies among tasks; these dependencies must be inserted
by hand. On the other hand, EMMA keeps track of dependencies among system
components in terms of the properties and assumptions declared for each component.
In this way, EMMA has a more detailed understanding not only of dependencies, but
also the reasons (rationale) for dependencies. EMMA thus is more flexible in
considering contingencies and alternative approaches to building a system. Because
EMMA is not concerned with scheduling or with resource allocation, its functionality
is complementary to that of a project management tool.

Requirements management tools

Requirements management tools such as Requisite Pro share with EMMA the
concern with system requirements and collaborative information management among
participants on a project. Requisite Pro supports team-based requirements
management. It allows project team members to prioritize, sort, and assign
responsibilities for requirements. It also provides dependencies among requirements,
which can be used to trace the relationships among parts of a project (or even among
different projects) and supports the computation of the impact of a change of
requirements. Finally, like EMMA, Requisite Pro supports the recording of
requirements changes, including who made the change, at what time, and why. While
much of the functionality of Requisite Pro is similar to that of EMMA, EMMA's
notion of a solution structure provides a framework for reasoning about requirements
and the components built to satisfy them. Also, EMMA's notion of a sequence of
releases provides a temporal dimension for reasoning about requirements that is
missing in pure requirements management tools. In these ways, EMMA provides
more structure on which to hang requirements and reason about them.

DOORS

DOORS [DOORS] is a requirements traceability tool which provides extensive
support for managing shared structured data. Its data model is very general:
information is organized into modules, each of which is a hierarchical collection of
objects. Each object has a number of attributes, and structured links to other related
objects. DOORS provides a convenient "drag and drop" interface for quickly making
links between objects. It also provides a wealth of different options for importing and
exporting structured data—as Word documents, Microsoft Project data, HTML, etc.

DOORS provides a very flexible and useful framework for collaborative recording
and modifying requirements data. Unlike EMMA, DOORS does not assume any
particular metamodel. Although this greatly increases the flexibility of using DOORS,
it eliminates the possibility of any automated heuristic support in maintaining

13

consistency, or checking for completeness. Such automated support would have to be
implemented as third-party "critic" programs that worked off of DOORS data.

One interesting possibility for future work on EMMA would be to reimplement EMMA

using DOORS. This would amount to defining a set of module types, object types,
attributes and link types that would be meaningful to EMMA, and then writing all the
EMMA analysis tools as various critics on the DOORS structure. Although DOORS
doesn't provide any type checks or other consistency checks on its structures, it
would be possible to write a report generator that created reports on problems found
with a solution structure represented in DOORS.

The only thing that may be difficult to do using DOORS would be to provide
interactive support for making a sensible solution structure. Of course, it can all be
done after-the-fact via critics on DOORS export files. Many of the EMMA concepts
are completely missing in DOORS, such as the notion of a "release", and the
distinction between properties and context. But that's to be expected, since it is really
a generic tool for managing shared structured data.

Another possibility would be to just keep the EMMA Java code as it is, and work on
import/export from DOORS. We could probably make it so that solution structures
could be created/edited in either tool.

IBIS/REMAP
Whereas DOORS and RequisitePro are intended to capture structural aspects of
requirements, another type of requirements management tools are for recording and
managing discussions, which provide the reasoning behind design decisions. IBIS
(Issue Based Information Systems) [IBIS] is a model for representing discussions
such as those that a group might have prior to making a decision about a course of
action. IBIS sorts the information about how such a discussion progressed into
several categories of discussion objects:

1. Issue. An issue is usually a question that needs to be answered, such as
"How shall we accomplish such-and-such? " Such questions are the
starting points for discussions.

2. Position. A position is a proposed answer to a question, or a proposed
approach to addressing an issue. For example, if the issue is "How
shall we get a system with such-and-such properties?" there may be
two main alternative positions: (1) "Build it" and (2) "Buy it."

3. Argument An argument is a reason for supporting or objecting to a
position. For example, the position called "Buy it" may have a
supporting argument "It is quicker" and may have an objecting
argument "No current products have a flexible enough interface."

14

A problem with IBIS is that discussions can grow to be enormously complicated, and
there is no support for relating the discussions to decisions that have been actually
made in the development of a system. Partly this is because IBIS was intended to be a
general model for representing discussions, and was not created with software
engineering specifically in mind. REMAP (Representation and Maintenance of
Process knowledge) [REMAP] is an extension to IBIS that adds new types of objects
and relationships specifically to support the software development process. In
addition to the objects supported by IBIS, REMAP also provides the following
additional ones:

4. Requirement By introducing requirements, REMAP helps to focus
discussions towards the ultimate objectives for the project.

5. Decision. While IBIS simply records the alternative positions,
REMAP provides more history information about a project by also
recording decisions made.

6. Constraint. REMAP explicitly records the constraints that design
decisions place on the artifacts being developed.

7. Design Object REMAP also explicitly represents the system design
artifacts that are at issue in discussions.

8. Assumption. REMAP makes explicit the assumptions behind
arguments.

Relationship with EMMA: REMAP captures some of the same kind of information
as the EMMA metamodel. In particular, REMAP is like EMMA in attempting to
relate design objects to the assumptions under which those objects were designed.
The main focus of REMAP is to record the reasons for deciding among alternative
design artifacts. However, in REMAP the relationship between assumptions and
design artifacts is indirect: Assumptions are related to arguments, which are related to
decisions, which affect design artifacts. EMMA more directly records assumptions as
they are relevant to a solution. In contrast to IBIS and REMAP, EMMA structures
system information not around issues to be addressed, but around the goals for the
system and its components. EMMA also specifically addresses evolution. We believe
that this will provide a tighter structure to the information and will allow a more
efficient use of the information in future evolution.

One promising approach is to combine REMAP with EMMA. EMMA would provide
the overall structure that would serve to focus system information around particular
system development goals. REMAP could then be for discussions leading to a
decision among alternative plans in the EMMA solution structure.

15

WinWin
IBIS and REMAP take discussions to be about objective, factual issues. In contrast,
the WinWin model [WinWin], also funded by EDCS, recognizes that different
stakeholders may have different objectives for a project and different views about
what is relevant and what is important. WinWin makes the idea of negotiations
among multiple stakeholders explicit in the model. The objective of a WinWin
discussion is to find a set of win conditions that are acceptable to all of the diverse
participants in a project.

We will not attempt to describe the WinWin model in detail, but instead will
summarize the key points that are relevant for EMMA:

By keeping track of the sources for requirements (Which stakeholders demanded
which requirements? To what extent were the requirements a compromise between
different objectives?) WinWin can help future maintainers to understand the issues
involved in system evolution. The objectives of the different stakeholders can be
revisited at a later time to see if the reasons for the original development decisions
still apply.

WinWin explicitly records when requirements are "scoped out" because of lack of
resources or because of conflict with other requirements. System requirements that
have temporarily been put to the side are good candidates for possible directions of
evolution directions for the system.

EMMA has several features in common with WinWin. In particular, both systems
support collaboration, recording of goals and assumptions, and recording possible
directions for system evolution. However, these two systems are appropriate at
different stages of a system's life cycle. WinWin is most appropriate during the initial
negotiation of requirements among customers, end-users, and developers. Unlike
WinWin, EMMA assumes that the developers are, in some sense, all on the "same
team" and are trying to accomplish the same ultimate goals. EMMA is therefore more
suited for goal-directed development after the initial requirements have stabilized and
in planning for future evolution.

Configuration Management Tools

Finally, configuration management tools such as StarTeam provide functionality that
is in some ways similar to that of EMMA. Like EMMA, StarTeam is a collaborative
information management tool. It keeps track of differences between versions of a
software product. It supports future releases indirectly, by tracking the handling of
change requests. Like EMMA, StarTeam supports distributed projects. However, the
emphasis of StarTeam is mainly on configuration management, and annotating
versions of a software product with information about how it differs from earlier

16

versions (and why the changes were made). In contrast with EMMA, StarTeam is not
concerned with planning future evolution of a system, but is instead concerned with
documenting past evolution.

Conclusions and Recommendations for Future Work

The idea behind the use of EMMA to support software evolution is that when an
evolutionary step occurs, it will always be initiated by some change of properties or
context at some level of the solution structure. EMMA can help in understanding the
impact of such a change by tracing through the dependency relationships to discover
what subgoals are affected by the change. The tracing can be used in the reverse
direction, as well, to find out what high-level goals depend on what components of
the system solution. This makes analysis of the impact of changes much more
focussed.

EMMA is designed to support system development and evolution in the following
ways:

• It supports structured, goal-directed communication about system
development. EMMA provides a framework for recording information
about the expectations and responsibilities of all members of the
development team.

EMMA presents information about the status of a development
project, tailored for each subsystem or component. This status
information includes incompleteness (in terms of requirements
implemented) as well as inconsistencies of the dependency or release
information.

EMMA provides evolution assistance in several ways:

1. It provides a mechanism for a developer to anticipate future
changes in requirements, assumptions and resources, and record a
plan for responding to these changes. These recorded anticipations
can provide a valuable head-start for future system developers
charged with responding to such changes.

2. It allows for high-level requirements or assumptions to be changed
to take into account problems encountered in implementation. A
developer who runs into problems in fulfilling a goal can request
changes in the requirements for that goal. EMMA provides a
structure for recording the reasons for such changes and provides
support for propagating such changes throughout the system.

17

3. It supports release planning by providing an analysis of the
completeness and consistency of a system, on a release-by-release
basis. EMMA does this by tracing the chain of dependencies of
features for each release to see if a property depends on a resource
that is not available for the release or on a low-level property that
will not be implemented for that release.

Recommendations for Future Work

Currently, EMMA exists as a research prototype. For it to be made into a useful,
commercial-quality tool, there are several design, feature, and implementation
changes that should be made.

Database implementation
First, EMMA currently stores all information in an ASCII file format. Although this
choice was convenient for rapid implementation of the prototype, it is not a viable
long-term solution. Eventually, EMMA should be reimplemented using a fast, robust,
database. This would have many advantages, because many of the EMMA operations
that are now slow and fragile could be implemented using standard database
operations. These include: (1) copying all or part of a solution structure, (2)
maintaining links among properties, (3) maintaining history information and making
backups, (4) multiuser operations.

Multi-Threaded Server and Improved Multi-user Capabilities
The current implementation of EMMA only allows one user to access an EMMA

solution structure at a time. This limitation would be unacceptable in a big project
involving a large number of developers. For this reason, the EMMA Data Manager
needs to be rewritten so that several users can access EMMA at the same time. Also,
the access control that is currently used by EMMA is not very robust, and easily
circumvented. A more secure form of access control should replace it.

The implementation of a more sophisticated multi-threaded/multi-user version of
EMMA depends on the multi-use policy that is to be enforced. For this reason,
development along these lines needs to take place using extensive feedback from user
groups.

Improved Reports
Although EMMA currently generates a number of different types of reports about the
state of the EMMA solution structure, these reports could certainly be improved
greatly, to make them more focussed and more informative. As with the multi-user
capability, the exact type of reports to be generated should be decided with extensive
feedback from user groups.

18

Automated Support for Creating and Modifying Solution Structures
The usability of EMMA would be greatly improved with more sophisticated ways to
create and modify complex solution structures. The exact type of operations that
should be supported would depend on the needs of user groups. This feature would
also depend on the type of operations provided by the database implementation.

More Flexible Solution Structures and Releases
Although the EMMA metamodel is very general, there are still serious limitations that
may need to be overcome in a commercial-quality product. Some new features that
would likely prove useful in the development of a complex system are:

1. Ability to create subreleases. EMMA'S current notion of a "release" is a
delivery of the entire system. For a complex system, there will also be
subreleases, which are different versions of components or
subsystems. EMMA needs the ability to declare subreleases and specify
how they combine to make releases of the system as a whole.

2. Structure sharing. Currently EMMA does not allow alternative solutions
to share subgoals. It is possible to copy a goal from one solution and
paste it into the other, but once that is done, changes to the original are
not reflected in the copy.

3. Parallel solution development. Currently, EMMA has a linear notion of
a system's releases. At any time, there is a notion of the "current
release". A more general approach would be to allow multiple,
ongoing versions of a system to be represented in EMMA at the same
time. For example, there could be Macintosh and Windows versions of
a software system which would evolve in parallel.

These changes to EMMA would make it into a unique and very powerful tool for
managing the evolution of complex software systems.

19

The EMMA Metamodel for
System Evolution
EMMA was designed to support the collaborative development and evolution of
complex systems. EMMA manages the collection "evolution memory" for a software
system, which contains information about the context in which design decisions were
made, including plans for future system evolution. Software developers have the
opportunity both to draw from this memory to understand the reasons for past
decisions and the consequences of evolutionary changes, and to add to it, to make
their own insights available for future system evolution.

EMMA'S approach to supporting software evolution is to let the developers' goals for
software evolution drive the way design knowledge is acquired and presented. EMMA

supports the communication and management of information about the goals and
plans for system development by providing a structured interface for recording this
information, and a collection of tools for analyzing the consequences of changing
requirements. This chapter describes the metamodel for system evolution supported
by EMMA.

Properties and Context

In designing a new system, developers need to keep in mind two different kinds of
information:

1. properties of the desired system: what functionality the users of the system
(where the "users" might not be human; they might be other systems) can
expect the system to provide, and

2. contextual information: assumptions about users, other systems,
computational infrastructure and operating environment on which the
system can rely.

20

Typically, a system's requirements combine both types of information, but very oftei.
much of the background information about the expected behavior of users and the
properties of the operating environment is left implicit. The lack of documentation of
implicit assumptions makes it very difficult to uncover the impact when this kind of
information changes.

EMMA uses the term property to mean any feature or attribute that a system or system
component should have when it is implemented. The assumptions, resources, and
definitions of terms used in implementing the system or component are collected in
the context. EMMA is unique among requirements management tools in clearly
making the distinction between properties and context.

The EMMA metamodel thus explicitly distinguishes between functional requirements
for the system (which become "properties") and the context within which the system
is developed. The context consists of background information that is needed to
understand a system's functional requirements, including:

• the definitions of terms used in the requirements,

• assumptions about the domain, users and the operational
environment, and

• properties of other systems with which the system being built must
interact.

The context provides a framework within which the solution is to be constructed, and
describes the system's role within that framework.

In the EMMA metamodel, the context associated with a goal will include the answers
to the following sorts of questions (not intended to be exhaustive):

• What sort of users will be operating the system, and what kind of
training will they have?

• How many users will operate the system simultaneously?

• Into what sort of operating environment will the system be placed?

• What resources (COTS products, tools, etc.) will be used with the
system being developed?

• What are the properties of those resources on which we can we
rely?

• What are the meanings of the terms used in the requirements
documents?

21

In understanding the design of a system, this kind of context information is as
important as the functional requirements that the system must meet. This is especially
true for system evolution. When putting a system into a new environment, it is crucial
to understand what assumptions the original developers made about the operating
environment. If some of these assumptions are no longer valid, then the system will
likely need to be redesigned. EMMA'S ability to trace the assumptions to the specific
system components that rely on them can greatly improve the efficiency of
responding to system changes.

Goals and Solutions

The organizing principle behind EMMA'S metamodel for system development is that
to reason about system evolution, it is necessary to understand in detail the goal for a
system and the solution constructed to address those goals.

A goal for EMMA is a collection of properties and context elements that together
describe a kind of development contract. The contractor agrees to build a system or
system component satisfying the properties for that goal, if the client provides all the
resources appearing in the context and insures that all the assumptions appearing in
the goal's context are true.

A solution in the EMMA metamodel is a software engineering approach to satisfying
some development goal. A solution may either be atomic or composite. An atomic
solution is created by explicitly providing a reference to an existing implementation
satisfying the goal (e.g., a COTS tool or component from a library). A composite
solution describes a way of creating a system by partitioning system responsibilities
among system elements. For example, a solution for building a complex system might
involve partitioning the system into user interface, data structures, and algorithms,
each with a corresponding goal with its own requirements to fulfill.

Goals occurring at different levels of the solution structure will have different
associated contexts. The context for a component of a system will include
information not only about external systems and users, but also about other
components with which it must interact.

The collection of goals and solutions associated with a system to be built will be
referred to as a solution structure. Figure 1 below shows a sample solution structure.
Mathematically, it is a tree structure, in which every node of the tree represents a goal
or solution. Every solution structure starts with a top-level goal node, representing the
requirements for the system to be built. In Figure 1, the goal is to build a system
called "Status Reporter". Underneath the top goal is one or more solutions,
representing alternative approaches to implementing that system. In this example,
there are two solutions: "Web-based Solution and "Word-based Solution". For each
solution there may be one or more subgoals, representing components, or subsystems.

22

In the case of "Web-based Solution", there are four subgoals: "Project Data
Interface", "Web Server", "Report viewer", and "Report Generator". Different
solutions will in general have different subgoals. Each subgoal may in turn have one
or more solutions underneath. An EMMA solution structure thus alternates solutions
("or" branches representing implementation choices) and goals ("and" branches
representing decomposition into subsystems) until at the bottom are atomic solutions,
representing already implemented components, utilities, tools, algorithms, etc.

Why Alternative Solutions?
Because potentially there can be a number of alternative solutions at every level, this
can mean that much of an EMMA solution structure represents possibilities that are not
relevant for a particular implementation of a system. So why then is it important to
represent all these other possibilities? The reason is that there is never just one
implementation of any useful system. There is always a succession of releases and
versions, each of which differs from the last in large or small ways. These changes
from release to release are made to reflect new requirements from the customer or
user, or to fix problems discovered in earlier versions of the system, or to take into
account changes in infrastructure or hardware.

By explicitly representing alternatives, EMMA provides a place to record the
reasoning behind the original choice of approaches at ever level of the design. When
a future requirement or change of context forces the developers to revisit those
original design decisions, this reasoning can be checked to see to what extent it still
applies. Of course, good documentation does this, in an informal way, but EMMA

makes good documentation practice more reliable by tying the reasoning for choices
to the properties and context changes maintained in the solution structure. EMMA is
unique among tools for software engineering in its support for alternatives in the
context of system evolution.

Dependencies

EMMA provides a structured way for recording, maintaining and analyzing the
dependencies among properties and context elements. The EMMA metamodel
supports the following types of dependencies:

1. A property of a subgoal may contribute to a property of its parent solution.
For example, a system solution may have a property, "User friendliness".
This solution may have a subgoal "User Interface" with a property
"Intuitive graphical interface" which contributes to the property "User
friendliness". EMMA records this as a "contributesto" link from the low-
level property to the high-level property.

23

2. Similarly, a property of a solution may contribute to a corresponding
property of its parent goal.

3. A property of a subgoal may also contribute to a context element of a
sibling goal. For example, a solution may have subgoals "User Interface"
and "Tree Algorithms". "Tree Algorithms" might provide a particular
algorithm, "tree balancing algorithm" which is used by the "User
Interface" for automated layout. Thus "tree balancing algorithm" would be
a property of "Tree Algorithms" and would be a context element of "User
Interface". EMMA records this as a "contributesto" link from the property
to the context element.

4. A property of a goal may depend on a context element ofthat goal. This is
extremely important for planning releases. Not only does a component as a
whole depend on particular assumptions or resources, but also each
property of a component may depend on those context elements. This fine-
grained dependencies allow "What If?" type reasoning about releases: If
we drop or add this feature, what savings or cost in terms of required
resources would result? EMMA records this as a "dependson" link from
the property to the context element.

5. A context element of a goal or solution may depend on the context
element of the parent node. Context elements represent resources and
assumptions provided or insured by means external to the node. In EMMA,

these context elements flow from a high-level node down to the lower
level nodes in which they are used. This is recorded as a "dependson"
link from the low-level context element to the parent context element.

The above rules describe the "single step" dependencies in EMMA. By chaining these
atomic dependencies, EMMA can compute longer-range dependencies relating
properties and context elements throughout the solution structure. This network of
dependencies in EMMA provides an opportunity for automated support in tracing
requirements or assumptions to the system components in which the requirements are
implemented or the assumptions are used.

Releases

To provide for the changes of a system's requirements and implementation during its
lifetime, the EMMA metamodel has a concept of a release. A release is a "slice"
through a solution structure, picking out

• a subset of the properties and context elements that are relevant for
a particular version of a system,

24

•

a subset of the subgoals that are relevant and,

(when there is more than one solution to a goal), which solution is
to be "active" for that version.

In release-based software evolution, a release represents incremental
progress towards the "ultimate" system; typically, the first release will
only be a demonstration of key concepts, while later releases will
gradually introduce more desired features, some of which will require
design changes in order to be incorporated. EMMA is unique among tools
supporting requirements management in explicitly representing the
progression of requirements throughout a planned sequence of releases.

Developing a sequence of releases is not simply a matter of adding more and more
features from a pre-existing list. Once a release is completed and given to users, there
will be feedback about desired new features, as well as bugs to fix. There will also be
unanticipated changes to available tools and infrastructure on which future releases
will depend. The EMMA solution structure assists in managing these changes of
release plans by tracking dependencies among properties and context for all system
goals.

The network of dependencies among properties and context elements in a solution
structure allows EMMA to automatically compute a release assignment for low-level
properties and context elements using release assignments for properties and context
elements of the top goal.

Collaboration: Goal Owners and Contractors

Another aspect of software development supported by EMMA'S metamodel is
collaboration. In developing a solution to meet some high-level goal, developers
proceed by factoring each goal into smaller subgoals. Developers working on
different subgoals must coordinate their actions. To facilitate this coordination, the
EMMA metamodel has a notion of the owners and contractors for goals. The owner of
a goal is responsible for that goal and any solution developed to achieve it. A
contractor for a goal is a developer who is working towards achieving the goal. Only
a goal owner may change the requirements associated with the goal, but a contractor
for a goal is able to create, modify, and act on a solution for achieving the goal.

The context and properties associated with each node represents the details of a
contract between two groups of people. For the top goal, the properties represent the
functionality that the developers are promising to build, while the context represents
necessary conditions that the owner of the top goal (representing the customer) will
guarantee.

25

At lower levels of the solution structure, context and properties represent contracts, as
well, but they may represent contracts between developers as well as with the
customer. The context of a lower-level goal represents not only resources and
assumptions that will be guaranteed by the customer, but also those that will be
guaranteed by other members of the development team (those working on other
goals). Likewise, the properties of a lower-level goal represent not only functionality
required by the customer, but also functionality required by fellow developers. If one
component provides some functionality that is used by another component, that
functionality will appear in the "properties" of the goal for the first component, and in
the "context" of the second component. EMMA thus provides structured collaboration
by supporting the recording and analysis of the web of obligations among members of
a development team.

Negotiation and Discussion among Collaborators
There are two main models for collaboration that are commonly used:

1. Top-down models, in which the requirements are established at the
top-level, and carried out at lower levels, and

2. Peer-to-peer models, in which all participants are treated as equals.

The main problem with a pure top-down approach is that it lacks flexibility; if the
original partitioning of the tasks turns out to be inappropriate, it can be very difficult
to change it. On the other hand, pure peer-to-peer collaboration can become very
unstructured and unwieldy; it is difficult to keep focused on the ultimate goals for the
project as a whole.

In the EMMA metamodel, we adopted the structure of the top-down approach, but at
the same time we took steps to address its inflexibility:

• The hierarchy in the EMMA metamodel is a hierarchy of goals,
not a hierarchy of workers or of tasks. The metamodel does not
prescribe any order for carrying out tasks, and it does not
specify who may or may not work on various tasks. A
developer may simultaneously be working on several goals at
once, and the owner for one goal may be a contractor for
another. Also, tasks performed in order to accomplish goals
can occur in whatever order is specified by the organization's
policies or process methodology. The EMMA solution structure
provides a way of organizing the results of the development
tasks without prescribing how those tasks are done.

• EMMA explicitly supports evolution of the goals for a system.

26

EMMA supports "bottom-up" as well as top-down influences on
a system's design. Often the final requirements for a system or
for a component of a system are arrived at only after a period
of negotiation and discussion. A goal owner asks, "Can you
give me this?" and the contractor responds, "No, but I can give
you this similar thing that will do just as well in most cases."
The EMMA metamodel is designed to support such
communication and record it, so that this crucial information
about how requirements evolved will be available to support
future reasoning. EMMA'S feedback mechanism provides this
support.

• EMMA'S metamodel allows for the possibility that a particular
proposed solution may not satisfy all the requirements of its associated
goal; it may lack some desired properties, or it may require additional
context elements1.

We believe that it is important that such conflicts be explicitly recorded, rather than
swept under the rug, because discrepancies between the expectations of clients and
what the developer considers realistic can be an important clue to the evolution of the
system. One approach to resolving a conflict is by using releases. Early releases
might implement only a subset of the desired functionality of the system, while later
releases might incorporate additional functionality when the additional resources
required by the developer become available. Another way to resolve conflicts is by
switching to a different solution. In this case, the conflict becomes the reason for
choosing one solution over another, which again is important for evolution: if
changes of requirements or context in the future resolves the original conflict, then
the choice of solutions can be revisited in a future release.

Feedback

As described earlier, the properties and context of a goal of an EMMA solution
structure represent a sort of contract:

The developer agrees to build a system (or component) satisfying
the properties, under the assumption that all assumptions appearing
in the context are true, and that all the resources appearing in the
context are available.

Additional context elements means that the proposed solution requires more resources than provided in
the goal, or that it requires additional assumptions, which makes it less general.

27

Often it happens that in the course of implementing a component, a developer may
discover reasons to revise the associated contract. This could be in the form of a
problem with the original requirements: perhaps the developer requires more
resources than expected to build his component. Perhaps the developer finds that
some inessential system is much more difficult to implement than originally thought.
Another reason for revising the contract might be because the developer has
discovered an unforeseen opportunity: Perhaps he believes that his component can
easily be made more general than planned, or perhaps he finds that it can be
implemented using fewer resources.

EMMA provides for the possibility that the contractors for any goal may provide
feedback about the contract (properties plus context) for that goal. The contractor
makes his proposed change (which is recorded in the solution owned by that
contractor). The owner of the goal may then either accept the change (propagating the
change upwards to make it "official") or offer a new counter-proposal. EMMA

provides an opportunity to record such changes and the reasons behind them, so that
these decisions can be revisited in the future should circumstances change.

Consistency and Completeness
Although the long-term benefit of the EMMA solution structure is that it supports the
system's evolution, an important short-term benefit is that the solution structure keeps
track of consistency and completeness of a solution.

Consistency and Completeness Problems
EMMA uses the network of dependencies among properties and context elements
throughout the solution structure to assess the status of the implementation of the
system. In particular, EMMA checks for the following potential problems in the
solution structure (something that must be resolved among the collaborators)

1. Unavailable dependency: A property occurring in some release
depends on a property or context element that is not available until a
later release (or which has not been assigned to any release yet).

2. Unaccounted for dependency: A property occurring in some release
depends on an unaccounted for context element. A context element in
EMMA must have an origin; either it is created as a property of some
goal, or else it enters the solution structure at the top goal (representing
resources and assumptions guaranteed by the customer). An
unaccounted for context element represents something that is required
by some goal but which nobody is providing.

28

3. Unimplemented property: A property occurring in some release may
not be completely implemented. A property is only implemented if it
can be traced down (through dependency links) to some atomic
solution, representing an implemented component.

4. Circular dependency: A property occurring in a release may depend on
another property or context element in a circular way. That means that
the chain of dependencies connecting the two has a loop.

As described earlier, the EMMA metamodel views such conflicts as important clues
for future evolution, as well as indicating a problem in a particular release.

Bibliography

CBSE. Ning, J. Q., Miriyala, K., and Kozaczynski, W., "An Architecture-driven,
Business-specific, and Component-based Approach to Software Engineering,"
Proceedings of the 3rd International Conference on Software Reusability, Rio de Janeiro,
Brazil, November 1994.

DOORS. QSS, Inc. http://www.qssinc.com

Euclid. B. W. Lampson, J. J. Horning, R. L. London, J. G. Mitchell, and G. L. Popek.
"Report on the Programming Language Euclid," ACMSIGPLANNotices, 12(2), February
1977.

Familiar. Dean Allemang and Sidney Bailin, "Concept of Operations for FAMILIAR",
draft technical report, March 1997.

Ibis. J. Conklin and M. Begeman, "gIBIS: a hypertext tool for exploratory policy
discussion," ACM Transactions on Office Information Systems, Vol. 6, pp. 303-331,
October, 1988.

Meyers. Meyer, B., "Applying 'Design by Contract'," IEEE Computer, October 1992.

Remap. Balasubramaniam Ramesh and Vasant Dhar, "Supporting Systems Development
by Capturing Deliberations During Requirements Engineering," IEEE Transactions on
Software Engineering, Vol. 18, No. 6, June 1992.

29

TRP. Jin W. Chang and Colin T. Scott, "TRP Support Environment (TSE)," International
Workshop on CSCW and the Web, 1996.

WinWinMmgjxme Lee. "Foundations of The Winwin Requirements Negotiation
System." Technical Report TR-96-501, USC Center for Software Engineering, University
of Southern California, University Park, Los Angeles, April 1996.

30

Appendix: EMMA Pages and
Commands

EMMA Title Page

This page, in the right frame when you start up EMMA doesn't do much, except that

(1) clicking on the CoGenTex logo will open a window to the CoGenTex
home page, and

(2) clicking on the name of the version will toggle the version between
"Release Planning Version" and "Mission Planning Version". The
difference between these two versions is mostly differences in
terminology. For instance, points in time are called "releases" for release
planning, but are called "phases" in the mission-planning version.

Login Screen

This page has a line for entering a user name. The name entered becomes the "current
user". (This version of EMMA only supports one user at a time.) The current user may
only edit nodes for which he is the owner or for which there is no owner. The current
user may only create new nodes as children of a node for which he is a contractor.

If there is already a current user, then EMMA will forbid a second user from using
EMMA until the first user logs off.

There is a special user name, Administrator, which is able to edit any and all
information, and can log on at any time.

After logging in, the Workspace Page is loaded.

Workspace Page

This page is for doing operations on EMMA workspaces: creating, deleting,
duplicating, renaming, and importing from other tools, and exporting to other tools.

31

Creating a New Workspace

New Workspace
Click this button in order to create a new EMMA workspace. You will be
prompted to enter the name of the new workspace. Afterwards, the new
workspace will be in list of workspaces, and you may load it using "Loadv

Import
Click this button to import a WinWin taxonomy file into EMMA. A file dialog appears
to allow you to select a WinWin file. The translation operation creates a new
workspace using the data from the WinWin file. As with "New Workspace", the new
workspace appears in the list of workspaces, and may be loaded using "Load".

Operations on an Existing Workspace

For these operations, you must first select a workspace name appearing in the list in
the middle of the page. Each workspace has a corresponding file for persistent storage
in the directory "Workspaces", a subdirectory of the main EMMA directory.

Load
Click this button to load an existing workspace2.

Export
Click this button to translate an EMMA workspace into a Microsoft Project mpx file.
A dialog will ask you for a name to give the translated .mpx file. The translated file is

2 Note: EMMA has an auto-save feature, so that every change made to a workspace is automatically saved
to the corresponding workspace file. In some cases, such as example workspaces, this could pose a
problem, because a user might want to "play" with a workspace without worrying about messing it up for
the next person. For this reason, we have a special case of the "Load" operation that deals with example
files. If the name of the workspace ends with the string "example", then loading it will first cause a copy to
be made (See Duplicate). All changes to the workspace are then made to the copy, not to the original.

32

saved to the main EMMA directory. This file can then be loaded into Microsoft
Project, or viewed with CoGenTex' "ProjectReporter" viewer.

Duplicate
Click this button to create a copy of an existing EMMA workspace. The name of the
copy is the same as the name of the original workspace, with the string "Version n of
added at the beginning. The number "n" is chosen so that the name is unique.

Rename
Click this button to change the name of an existing EMMA workspace.

Delete
Click this button to delete an existing EMMA workspace.

Miscellaneous

Help
Click "Help" to view this file.

LogOff
Click this to log off and allow another user access to EMMA. If a workspace is
currently loaded, then you will be given an opportunity to describe the changes you
made to the workspace.

View Notes
This button only appears if there is a workspace loaded. Clicking on this button
allows you to view the notes on changes to the workspace made by previous users.

Left Frame
This page is for giving a global view of an EMMA workspace. In the upper left, there
is a Java applet (the TOC Applet) that shows a graphical presentation of the EMMA

solution structure for the current workspace. In the lower left are various links for
global operations, and two lines of status information. If the option ""Show
Solutions" is selected, then the solution structure shows a Goal node at the top,
representing the system to be built. Underneath the top node is a number of Solution
nodes, representing alternative approaches for implementing the top goal. Underneath
each solution node is a number of Goal nodes, representing the decomposition of the
system into components (or subsystems) for that solution. Each of these goals may in

33

turn have a number of alternative solutions under them, which may have still more
subgoals, etc.

If the option "Hide Solutions" is selected, then the Java applet in the upper left will
show only a hierarchical decomposition of the system into components and
subcomponents. In this display mode, only goals appearing in active solutions are
shown.

TOC Applet

The TOC (table of contents) Applet is the graphical tree structure shown in the upper
left of the EMMA window. The following operations are provided by the applet:

Go to a Node

Clicking on a node in the tree will cause EMMA to display information about that node
in the right frame of the EMMA window.

Expand/Collapse a Node
To the left of each node is a symbol, either "+" or "-". The "+" symbol is displayed
to indicate that the node has been "collapsed", meaning that children ofthat node are
not displayed. The "-" symbol is displayed to indicate that the node has been
"expanded", meaning that children ofthat node are displayed. Clicking on "+" or "-"
toggles between the two different display modes for that node.

Hide/Show Solutions
Underneath the TOC Applet is a link called either "Hide Solutions" or "Show
Solutions". Clicking on the link toggles between the two different modes. In "Hide
Solutions" mode, the TOC applet shows only goal nodes, not solution nodes.
Furthermore, only the goals of the active solution are shown.

34

Lower Left
In the lower left are a collection of links that can be clicked to perform global
operations on the EMMA workspace. These are:

• "Hide/Show Solutions", which toggles the TOC Applet between
the mode in which only goals are shown, and a mode in which both
goals and solutions are shown,

• "Undo", which undoes the last change,

• "Redo", which redoes the last undo,

• "Workspaces", which brings up the page for workspace operations,
and "Releases" (called "Phases" in the Mission Planning Version),
which gives information about the releases for the top goal of the
EMMA solution structure. At the very bottom of the left frame,
there are two items of status information: The first item shows
whether autosaving is off or on, and the second item shows the
current workspace. If there is no workspace loaded, this second
item will not appear. To change the autosaving mode, or to change
the current workspace, click on "Workspaces".

Undo
Clicking on this link causes the last change to the EMMA workspace to be
undone. Every time a change is made to the current EMMA workspace, a
backup is made of the last saved workspace, and then the current workspace is
saved. Clicking Undo will reload the last backup workspace.

Redo

Clicking on this link redoes the last change that had been undone.

Workspaces

Clicking on this link causes the "Select Workspace" page to appear in the
right frame. Click on this link to log off, to view notes about the current
workspace, to switch to a different workspace or to perform other workspace
related activities.

Releases (or Phases)

35

Clicking this link displays a summary of release information for the top goal. This
information includes (1) what releases are planned for this node, (2) what properties
will be included in each release, and (3) what context elements will be assumed for
each release.

Right Frame
In the right frame of the EMMA window, there is information and operations
that are specific to a given node. This node will be the node highlighted by the
TOC Applet on the left.

Parent Solution/Parent Goal
Click this link to navigate to the parent node from the current node. It causes the
parent of the current node to be highlighted in the applet on the left, and causes
information about the parent to appear on the right. This link is not present for the top
goal. If the currently selected node is a goal (other than the top goal), then this link
says "Parent Solution". If the currently selected node is a solution, then this link says
"Parent Goal".

Active Solution
This link is only present if the currently selected node is a goal. Clicking on
this link navigates to the active solution of the currently selected node. If there
is no active solution, it creates a new solution first.

Extended Context
This link is not present for the top goal. Clicking this link for any other node displays
a report giving the context for that node. In the case of a Solution, the extended
context tells (1) What properties of subgoals contribute to each property of the
solution. (2) What context elements of the solution contribute to each property of the
solution. (3) What context elements of the solution are used by properties of subgoals.
In the case of a Goal, the extended context tells (1) What properties of sibling goals
rely on each property of this goal. (2) What properties of sibling goals contribute to
each property of this goal. (3) What properties of the parent solution rely on each

36

property of this goal. (4) What context elements of the parent solution contribute
pnrh nrrvnprtv nf this anal

to
each property of this goal

In general, the extended context gives the relationships among a node and its
neighboring nodes: what does it rely on from neighbors, and what does it
provide that neighbors rely on.

Make Active

This link is only present for inactive solution nodes. Clicking this link causes the
current solution to become the active solution for its parent goal.

Tabs

There are five "tabs" associated with a node: (1) "Details, (2)
"Alternatives/Subgoals", (3) "Properties", (4) "Context", and (5) "Status". Clicking
on any tab causes the corresponding page to be displayed.

Details Page
Clicking on the "Details" tab in the right frame causes the Details page to be
displayed. The details page has assorted information about the currently selected
node: "Name", "Owner", "Contractors", "Type", "Description", "Parent Node",
"Releases". In each of these cases, to edit the corresponding information, click on the
name of the field. Below we describe these fields in more detail, and also editing
forms for this information.

Name
Clicking on the word "Name" causes a form for modifying the name of the node.

37

Owner
The owner of a node is the person responsible for maintaining that node. Any changes
to the node (its properties, its context elements, its releases) should only be done by
the owner (or someone acting in his or her behalf).

Click on the word "Owner" to bring up a form for selecting a person. Click on the
name of the owner to cause information about that person to be displayed.

Person Information Form
Clicking on the name of a person appearing in the "Owner" field or "Contractors"
field on the Details page causes a form to appear with information about that person.
A person has three types of information associated with him/her: (1) A name. (2) A
description, and (3) A URL (email address or web page). To edit any of these fields,
just click on the name of the field.

Select Person Form
This form displays a list of all people assigned to the current EMMA workspace. To
select a person (to assign the owner for a node or to add a contractor for a node), just
highlight the name of the person, and then click on the "Select" button. To add a new
person to the workspace, click on the "New" button, and a form will appear for
entering the name of the new person. This new person will then be added to the list,
and you may select this person. To remove a person from the workspace, select the
name of the person and then click "Delete".

Contractors
The contractors for a node are the people responsible for creating children for that
node. A contractor for a goal node is allowed to create a solution for that goal. A
contractor for a solution node is allowed to create a subgoal for that solution.

Typically, the top goal will be owned by the person responsible for the system being
built (a technical manager, for example). The set of contractors for the top goal may
often consist of only one person, the person responsible for designing the system.
This person will typically be the only contractor for the top goal, and will be the
owner of the active solution under the top goal. This top-level designer will typically
create the subgoals for his or her solution, and for each subgoal will assign as

38

contractor the person who will be responsible for implementing that subgoal. Thus, a
typical owner/contractor specification for a solution structure will be:

• Top goal: Owner = technical manager, Contractor = system
architect

• Active solution: Owner = system architect, Contractor =
system architect

• Subgoal: Owner = system architect, Contractor = subsystem
designer

This typical usage follows the pattern that there is only one contractor for each node,
and the contractor for one node is the owner of the children nodes. Also, typically the
owner of a solution is also the owner of all of its subgoals. EMMA does not enforce
this typical usage, however.

Clicking on the word "Contractors" causes a form to appear for selecting the
contractors for a node. Clicking on the name of any contractor appearing in the list on
the Details page will cause information about that person to be displayed.

Edit Contractors Form
This form shows a list of all contractors assigned to the current node. There are
buttons for the operations "Insert" (add a new contractor) and "Delete" (remove an
existing contractor).

If you click the button "Insert", then a "Select Person" form appears, listing all
personnel associated with the current workspace. This allows you to select a person to
add to the list of contractors.

If you click the button "Delete", the currently selected person will be removed from
the list of contractors for the current node (but not from the list of personnel
associated with the workspace).

Type
The type of a node is a string that characterizes what sort of object must be produced
to achieve the goal. EMMA does not constrain the set of possible types for a node, but
typical values might include "application", "utility function", "documentation",
"design", etc. To edit the type field, just click on the word "Type".

39

Description
The description field on the Details page is for informal descriptions of the current
node. In the case of a goal, the description will typically be about the requirements (or
constraints) for the object (or objects) that is to be built to satisfy that goal. In the case
of a solution, the description typically will be about the approach used to satisfy the
goal. To edit the description field, just click on the word "Description".

Parent Goal/Solution
Click on the name of the parent goal or solution to navigate to that node. (This has the
same effect as clicking the link "Parent Goal" or "Parent Solution" at the top of the
right frame.)

Release (or Phases)
Click on the word "Releases" (or "Phases") to edit the list of releases associated with
the current node. If a node is associated with a release, that means that the node must
be completed for that release. (Or at least some subset of the functionality must be
completed; the exact functionality that must be finished for the release is described on
the "Properties and "Context" pages).

Click on the name of a release in order to view and edit information about that
release.

Release Assignment Form
This form shows a table of all releases defined for the current workspace, with a
check box indicating whether the current node will be included in that release.
Clicking on a check box for a release will toggle it between checked (the node will be
included in that release) and unchecked (it will not be included in that release).
Clicking on "New Release" will cause a form to appear for adding a new release to
the workspace as a whole. Clicking on "OK" dismisses the Release Assignment
Form. Clicking on the name of any release causes an information page about that
release to appear.

40

Release Information Page
The release information page contains the following information: (1) The name of the
release. (2) A description ofthat release (usually, this description will contain an
informal description of the functionality that will be available for that release). (3) A
URL pointing to a web page describing the release in more detail. Click on the name
of a field in order to edit it.

At the bottom of Release Information Page are two buttons: Close, which
dismisses the page, and Analyze. Clicking on Analyze causes an automatic
analysis to be peformed in order to determine potential problems with the
release.

Release (Phase) Analysis Page
The results of a release analysis are displayed as a table, listing all the properties
associated with the release. For each problem, this table indicates whether there is a
problem with implementing this property in this release. Clicking on the name of a
property displays the problems associated with that property.

The sorts of problems that can be associated with implementing a property for a given
release are:

• Dependency on unavailable property or context element. This
means that the property depends on some other property that
will not be implemented in time for the given release.

• Dependency on unaccounted for property or context element.
This means that the property depends on some other property
which is not currently planned to be implemented anywhere, or
it depends on a context element that has no origin. For
example, if a property depends on some utility function, then
that utility function should have an origin; either it should be
implemented in some other part of the solution structure, or
else it should be an input to the project (in that case, the utility
function should appear in the context of the top goal). If neither
is the case, then the utility function is considered "unaccounted
for".

41

• Circular dependency. In this case, a property depends on some
other property or context element that depends on itself in a
vicious circle.

Alternatives/Subgoals Page
This tab is called "Alternatives" if the current node is a goal, and "Subgoals"
if the current node is a solution. This page contains the following information:
(1) The list of children nodes (called "Alternatives" for goal nodes or
"Subgoals" for solution nodes), and (2) A rationale. If the current node is a
goal, one of the children will be marked as the active solution.

Alternatives/Subgoals
To add or delete a child, click on the word "Alternatives" or "Subgoals". This causes an
"Edit Chidren Form" to appear.

Click on the name of any child on the Alternatives/Subgoals Page to navigate to that
node.

Rationale
The "Rationale" field may be edited by clicking on the word "Rationale". In the case of a
goal, the rationale describes the reason for choosing the active solution among alternative
solutions. In the case of a solution, the rationale describes the reasoning behind
decomposing the current solution into its subgoals; it describes informally how the
subgoals might work together to implement the requirements for the solution (as
described in the "Properties"and "Context" pages).

Edit Children Form
This form shows the list of all children associated with a node. There are six buttons
for operations involving this list:

(1) Insert: Click this to create a new child. A form will pop up to ask for the name of
the new child node.

(2) Delete: To delete a child, first select it, and then click the Delete button.

42

(3) Copy: To copy a child, first select it, and then click the Copy button. This copy is
available for pasting into the children list of any compatible node (you can only
paste a goal into the children list of a solution, and vice-versa).

(4) Paste: To paste a copied node, just click the Paste button. This adds the copied
node to the list of children (if the type is compatible).

(5) Derive: Click this button to ask EMMA to attempt to derive a first "cut" at the set
of children

(6) Done. This dismisses the Edit Children Form.

If the current node is a goal, then the Derive button will create a solution that has (as
a default) the same properties and context elements as that goal. If the current node is
a solution, then this button will create as many subgoals as there are property
groupings as that solution.

For example, suppose that the current solution has the following properties: (1) GUI
Interface, with subproperties (1.1) Tree widget for navigation, and (1.2) Mouse-
driven operation, and (2) Database services, with subproperties (2.1) Sort by type of
object and (2.2) Version control. Then clicking on "Derive" will produce two
subgoals, (1) "GUI Interface" with properties "Tree widget for navigation" and
"Mouse-driven operation", and (2) "Database services" with properties "Sort by type
of object" and "Version control".

This heuristic was added because it is often the case that the architecture of a system
will approximately mirror the structure of the features that the system must have.

Properties Page
The properties page describes the requirements that the current node must satisfy.
Requirements can include both objects to be produced, and features of those objects.
(In the typical case, there will be one node for each system component. In that case,
the properties page will list the features that the component will have, including
functional and nonfunctional properties. However, some nodes may represent a
collection of related objects; for example, there might be a node called "Utilities". In
this case, the properties page would list exactly what utilities are included, and what
features each utility will have.)

43

A property appearing in a node must be "implemented" in terms of properties of
lower-level nodes. In EMMA, implementation is indicated by the "contributes to" (or
"derived from") relationship (see the "Property Information Page").

The properties are structured, in the sense that each property may contain a number of
subproperties. There are several different conventions for using subproperties in
EMMA:

• A top level property may simply be a container for a related
collection of subproperties. For example, there may be a
property called "GUI properties", which has as subproperties
all properties that are relevant to the graphical user interface.

• A top level property may be logically decomposed into a
number of subproperties. For example, the property "Persistent
storage" may have subproperties "save to file" and "load from
file".

The properties page consists of a table listing all properties, together with
buttons for operating on this table. The table displays the following
information about each property:

• The name of the property.

• The category of the property. This is just a label for the type of
property (for example, graphical, security, etc.).

• The releases for which that property will be available. There is
one column for each release, with a check mark to indicate
whether that property will be available in that release.

• The estimated effort associated with implementing the
property.

• The origin of the property. This indicates whether the property
is "inherited" from a parent property, in which case the origin
will be "parent".

Clicking on the word "Releases" above the release columns can control the set
of releases that are displayed in the table. This raises the "Displayed Releases
Form".

Clicking on the name of a release appearing at the top of a release column
causes the "Release Information Page" for that release to be displayed.

Clicking on the name of a property causes the "Property Information Page"
for that property to be displayed.

44

At the bottom of the Properties page are a number of buttons for performing
various operations: "Release/Phase Report" "New Property", "Derive
Property", "Assign to Releases/Phases", "Assign for What If, "Paste
Property", and "Help".

Displayed Releases Form
To get to this page, click on the word "Releases" at the top of the release columns on
the "Properties Page" or "Context Page". This form shows a table of all releases for
the current node. Beside each release is a checkbox. If this is checked, then the
release will be shown on the Properties Page, and if it is unchecked then the release
will not be shown. This is convenient in cases where there is a large number of
releases, and one would like to concentrate on some small subset of them (typically,
the current release and the next couple of future releases).

Property Information Page
This page displays information about a specific property or context element. To get to
this page, click on the name of a property on the Properties Page or the name of a
context element on the Context Page.

This page has the following information:

• The name of the property

• The estimated effort for implementing the property.

• The category of the property.

• The parent property (if the property is a subproperty).

• The description of the property.

• The justification for changes to the property. This field is
relevant if the property is inherited from a higher-level node
but has since been modified. In this case, the justification field
explains the reason for the modification.

• What property (or context element) the current property (or
context element) was derived from.

• What properties (or context elements) the current property (or
context element) depends on.

• What properties (or context elements) the current property (or
context element) contributes to.

45

For each relationship (derived from, depends on, or contributes to), one may
specify additional information about the relationship: (1) requires/is required
by, (2) motivates/is motivated by, (3) a comment about the relationship.

If one property contributes to a second property, then the flag "is required by"
means that the first property is required for the second property; that is, if the
first property is not implemented, then the second property cannot be
implemented (at least not within the current solution). The flag "is motivated
by" means that the reason the fust property was introduced was to satisfy the
second property.

If one property depends on a second property, then the flag "requires" means
that the first property requires the second property. The flag "motivates"
means that the reason the second property was introduced was to satisfy the
first property.

EMMA enforces certain restrictions on how one property (or context element)
can directly depend on or contribute to another property or context element:

• A property of one node may contribute to (or be derived from)
a property of the parent node.

• A property of one node may depend on a context element of
the same node.

• A context element of one node may depend on (or be derived
from) a context element of the parent node.

• For a goal node, a context element of one node may depend on
(or be derived from) a property of a sibling node.

The property information page has two modes: view mode and edit mode.
When the page is first opened, it is in view mode, but clicking on the button
"Edit" switches to edit mode.

The Property Page has the following buttons:

• Edit (appears only in view mode): Switches to edit mode.

• Delete: Removes the property from the property or context
element list of the current node.

• Copy: Saves a copy of a property, to be pasted into another
node's property or context element list.

• Close (appears only in view mode): Dismisses the page.

• Save (appears only in edit mode): Saves the changes to the
property.

46

• Propagate Upwards: This copies any changes in the property to
whatever property it was derived from. This allows for
"bottom-up" changes. If the property is new, then this
operation will create a copy of the property in the parent of the
node in which the original is found.

• Propagate Downwards: This copies any changes in the property
to any properties derived from it. If the property is new, then
this operation will copy the property to any child nodes.

• Cancel (appears only in edit mode): Dismisses the page
without saving changes.

Release (Phases) Report
This displays a release report for the current node. The format is the same as
that produced by the "Releases (Phases)" button on the lower left frame.

New Property
This causes a "Property Information Page" to appear, in edit mode, with a
blank name for the property. Fill in the name and the other information and
then click "Save" to create a new property.

Derive Properties
This is used to inherit one or more properties from the parent node. A table listing all
properties of the parent that have not already been inherited is shown. Checking a
property will cause it to be inherited.

Context elements can also be derived.

47

Assign to Releases
This saves the changes to release assignments. To assign a property to a
release, click on the cell in the row for that property and for the column for
that release. This causes a check mark to appear. To unassign a property, just
click on a check mark to remove it.

Assign for What If
This button performs a provisional assignment of properties to releases for the
purpose of analysis of the consequences of changing the release assignments.

Analysis
This button is currently only available for the top goal. Clicking this button causes a
completeness-consistency analysis of the current assignment of releases. If the
assignment of releases is done provisionally, using "Assign for What If, this is called
a "What If?" analysis, because it is possible to explore the consequences of a
hypothetical change: moving a feature up to an earlier release, or pushing it back to a
later release. This analysis is essentially the same as the analysis of a single release
("Release Analysis Page"), except that it includes information about all releases
relevant to the current node.

Paste Property
EMMA allows properties to be copied, and pasted as well as nodes. Clicking on the
name of the property on the Properties page, and then clicking the Copy button copies
a property. After a property has been copied, it can be pasted into the properties list or
context element list of any node by going to the appropriate page and clicking the
Paste Property button.

Help
Brings up help for the Properties Page.

48

Context Page
The context page has the same structure as the "Properties Page". While the
Properties Page for a node describes what will be provided when the node is
implemented (what functionality, what features, what nonfunctional properties), the
Context Page details what the implementation of the node depends on. The sorts of
things that can appear in the context page are:

• Definitions of terms used in requirements.

• Assumptions about the environment, or about user behavior, or
about the behavior of other components.

•

•

Resources used in the implementation of the node which are
produced elsewhere.

Assumed properties of other nodes.

A context element should generally have an origin. The origin of a context
element can be external (that is the case for context elements of the top node),
or it can be a higher-level node, or it can be a sibling node. If a context
element has no origin, then EMMA considers that a potential sign of an
inconsistency or incompleteness.

While a property for a node may only be derived from a property of the parent
node, a context element can be derived from either the context of the parent
node or from a property of a sibling node.

Status Page
This page shows potential problems with a node, including incompleteness and
discrepancies between the properties and context of a solution and the properties and
context of its parent goal. The status page reports the following problems:

• Properties in a goal that are missing in the corresponding active solution. These
represent unimplemented system features, and may either reflect incompleteness
of the solution, or else a discrepancy that must be resolved through negotiation.

• Extra context elements present in a solution. Again, this discrepancy needs to be
resolved through negotiation.

• Properties or context elements appearing in a solution that are different (in
description, or name) than the corresponding item in the parent goal. This can

49

either represent a changed requirement that has not yet been taken into account in
the implementation of the solution, or it can represent a discrepancy that needs to
be resolved through negotiation.

Properties or context elements without release assignments.

Properties or context elements without dependencies. This is a likely indicator
that a link has been forgotten.

Properties or context elements that make no contribution. This either indicates
that link has been forgotten, or that the property or context element plays no role
in the system being built (and so can be eliminated).

No properties associated with the node. This probably indicates an
incompleteness of the EMMA solution structure for that node.

No context elements associated with the node. Again, this probably indicates
incompleteness.

Descendents with warnings. This just lists all children nodes (and grandchildren,
etc.) that have warnings associated, so that it is not necessary to search through
the entire solution structure to find all the potential problems.

50

DISTRIBUTION LIST

addresses number
of copies

DEBORAH A. CERINO 20
AFRL/IFTD
525 BROOKS ROAD
ROME NY 13441-4505

DARYL MCCULLOU5H
COGENTEX, INC.
VILLAGE GREEN, SUITE 2
840 HANSHAW ROAD
ITHACA/ NY 14850-1589

AFRL/IFOIL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROME NY 13441-4514

ATTENTION: DTIC-OCC
DEFENSE TECHNICAL INFO CENTER
8725 JOHN J. KINGMAN ROAD, STE 0944
FT. 8ELV0IR, VA 22060-6218

DEFENSE ADVANCED RESEARCH
PROJECTS AGENCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

ATTN: NAN PFRIMMER
IIT RESEARCH INSTITUTE
201 MILL ST.
ROME, NY 13440

AFIT ACADEMIC LIBRARY
AFIT/LDR, 2950 P.STREET
AREA 6, BLDG 642
WRIGHT-PATTERSON AFS OH 45433-7765

AFRL/HESC-TDC
2698 G STREET, 8LDG 190
WRIGHT-PATTERSON AF8 OH 45433-7604

DL-1

ATTN: SMDC IM PL
US ARMY SPACE ft MISSILE DEF CMD
P.O. BOX 1500
HUNTSVILLE AL 35807-3801

COMMANDER* CODE 4TL000D
TECHNICAL LIBRARY, NAMC-WD
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555-6100

CDR, US ARMY AVIATION S MISSILE CMD
REDSTONE SCIENTIFIC INFORMATION CTP
ATTN: AMSAM-RD-08-R, (DOCUMENTS)
REDSTONE ARSENAL AL 35898-5000

REPORT LIBRARY
MS P364
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM 87545

ATTN: DEBORAH HART
AVIATION BRANCH SVC 122.10
F0810A, RM 931
300 INDEPENDENCE AVE# SU
WASHINGTON DC 20591

AFIWC/MSY
102 HALL BLVD, STE 315
SAN ANTONIO TX 78243-7016

ATTN: KAROLA M. YOURISON
SOFTWARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE
PITTS3URGH PA 15213

USAF/AIR FORCE RESEARCH LABORATORY
AFRL/VSOSA(LIBRARY-flLDG 1103)
5 WRIGHT DRIVE
HANSCOM AF3 MA 01731-3004

ATTN: EILEEN LADUKE/D460
MITRE CORPORATION
202 BURLINGTON RD
BEDFORD MA 01730

DL-2

OUSD(P)/0TSA/OUTO 1
ATTN: PATRICK 6- SULLIVAN, JR.
400 ARMY NAVY DRIVE
SUITE 300
ARLINGTON VA 22202

AFRL/IFT 1
525 BROOKS ROAD
ROME, NY 13441-4505

AFRL/IFT« 1
525 BROOKS ROAD
ROME, NY 13441-4505

CENTRIC ENGINEERING SYSTEM, INC. 1
624 EAST EVELYN AVENUE
SUNNYVALE, CA 94086-6488

FLUENT INCORPORATED 1
500 DAVIS STREET, SUITE 600
EVANSTON, IL 60201

THE MACNEAL-SCHWENDLER CORPORATION 1
815 COLORADO BOULEVARD
LOS ANGELES, CA 90041-1777

MOLECULAR SIMULATIONS, INC. 1
9865 SCRANTON ROAD
SAN DIEGO, CA 92121-3752

CENTRIC ENGINEERING SYSTEM, INC. 1
624 EAST EVELYN AVENUE
SUNNYVALE, CA 94086-6488

«U.S. GOVERNMENT PR,NT,NG OFFICE: 2000-510-079-81227

DL-3

MISSION
OF

ÄFRL/INFORMÄTIONDIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

